Overview
of
Embedded Systems
In

Medical Applications

ee

Embedded Systems

Simplistic definition

Embedded System
Shorthand for Embedded Processor System
Embed microprocessor + fixed program in non-computer system

Microprocessor
Inside

AN)

Computer

Not a Computer

Embedded Systems — Hadassah College — Spring 2012 Overview Dr. Martin Land 2

Fundamental Architectural Abstractions

Digital computer
Machine that can be programmed to process symbols

Symbols

Instruction
Symbols describing processing of other symbols
Machine can interpret instructions in its machine language

Data
Symbol with no intrinsic meaning to machine
Meaning of data imposed by user

Microprocessor (uP)

Hardware device
Interprets instructions
Performs instructions (processes) on data

Program
Defines sequence of instructions

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee — Spring 2012 Overview

General Purpose Computers and Embedded Systems

A basic distinction

General Purpose (GP) Embedded System

Microprocessor-based \ \
Microprocessor performs J J
instructions on data

User can access + add + J J
modify data

User can access + add + J

modify programs

Toys, toasters, phones,
PC, workstation, file DVD players, car
server, mainframe engines, cameras,
medical devices

Examples

Share of microprocessors

(0] (o)
manufactured 1% 9%

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee — Spring 2012 Overview Dr. Martin Land

Why Embedded Processors?

Example — washing machine controller

Devices
Water heater / pump, level / temperature gauges, motor, indicators
Before 1990

Motorized mechanical controller
Operates devices in pre-set sequence
Gears, cogs, mechanical switches

Modify controller for each model
Update = redesign physical controller

After 1990

Microprocessor controller
Operates devices in programmed sequence
Digital timing and electronic switches
Modify controller program for each model

Update = change program code

Embedded Systems — Hadassah College — Spring 2012 Overview Dr. Martin Land 5

Economic Considerations

Pure hardware products

Product cost
Cost = NRE + MC x N
NRE = non-recurring engineering = R&D cost (salaries)
MC = manufacturing cost per unit
N = number of units manufactured

Pure hardware products

MC — large
Entire product is hardware
Low product re-use = poor economies of scale e S
NRE — large > ¥ : ¢ k e,
Highly specific R&D ﬁ_ in Y
Slow testing / update turn-around _ ?\V@
Shortage of electrical and mechanical engineers | “”
Higher salaries (since 2000)

Economic Considerations

Pure software products

Product cost

Cost = NRE + MC x N
NRE = non-recurring engineering = R&D cost (salaries)
MC = manufacturing cost per unit
N = number of units manufactured

Pure software products

MC —> 0
Entire product is software

NRE
R&D is primary cost
Complex development techniques to lower cost
Object oriented design, middleware platforms, standard libraries
Complex design can harm performance and reliability
Multiple stages of processing
Standard software = less well understood

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee — Spring 2012 Overview Dr. Martin Land

Economic Considerations

Embedded software products
Product cost
Cost = NRE + MC x N

NRE = non-recurring engineering = R&D cost (salaries)
MC = manufacturing cost per unit

N = number of units manufactured

Embedded software products

MC significant for large N

Embedded software = improved hardware re-use + economies of scale
NRE

Accept higher R&D cost to lower MC

Avoid highly complex software models

Program in core systems in C and assembly
Restrict memory usage

eeeeeeeeeeeeeee — Hadassah College — Spring 2012

Embedded Medical Equipment

Familiar examples

A my/dL
|51 (232m

Portable

Glucose EKG

Test Set

MRI

Embedded Medical Equipment

Glucose test set

Components

User interface (Ul)
Buttons
Text-oriented screen

Strip connector

INFINITY"

(Fr
T

- mo/dL |

Batte ry e 12:32m
Controller (system-on-chip) 0
Programming tasks — 33533333

Operate Ul e
Detect buttons iy
Display text _‘)»

Detect strip Speaker

Control blood test cycle —

Test battery, temperature, Protection -
program sanity, ... — 4 >

Push Buttons

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee — Spring 2012 Overview

Embedded Medical Equipment

Portable EKG

Components Q)
User interface (Ul) Cip® st 10 \ifo_
Buttons i i/f

Graphics-oriented screen
Electrode connector

Battery
Controller S A
i i
Programming tasks j) X
-~
Operate Ul
(- m-i" AmhF
Detect buttons N
Display text + graphics oo e

Control electrode amplifiers + A/D

Control digital signal processing (DSP) of input signals
Generate graphic display signals

Test battery, temperature, program sanity, ...

Embedded Systems — Hadassah College — Spring 2012 Overview

Embedded Medical Equipment

Magnetic Resonance Imagino

Y Coil
Creates warying

Components o i o
Multiple user interfaces b~
Patient table Sy
Magnetic field and RF sources __ | Y
Electromagnetic field detector |15 \' VL ol |, "
Power supply oY Ry -
Controller s

Programming tasks
Operate Uls

Control table
Control magnetic field and RF transmission

Control electromagnetic field detector
Imaging algorithms and graphics processing
Test system sanity

Embedded Systems — Hadassah College — Spring 2012

Embedded Medical Equipment

Division of labor

Hardware engineering
Design of peripheral components
Sensors, actuators, displays
Characterization of peripherals
Design of device drivers
Design of generic programmable embedded platforms
Goal — specify hardware as API abstraction

. . P— aackignt foomaaag
Software engineering Controlie LCD Display
Defining system requirements —-

LED

Specifying generic platform

High level system software planning
Lower level software design
Procedure / class coding

Driver integration | bl . mE
Goal — interact with hardware via API Battery v Buttons

—a())

Speaker

.[&.

usg

ESD

eeeeeeeeeeeeeee — Hadassah College — Spring 2012 Overview

Embedded Medical Equipment

Example: software technologies used in MRI

C, C++/STL, C#, Visual Basic, ASP, JavaScript, Perl, Batch,

Programming Languages and other proprietary languages

Persistent Storage RDBMS, flat files, indexed and sequential files, XML

Interprocess communication | Socket, COM, shared memory, shared files

Source Code Size 8 million lines of code in 30,000 files

Scanning hardware: nanoseconds
Timing accuracy Real-time software: 1 millisecond
User interaction: 0.1 -1 second

Philips Research, Embedded Systems in Healthcare, 2008

Embedded Systems — Hadassah College — Spring 2012 Overview Dr. Martin Land

Typical System Structure

Hardware
Microcontroller (uC)
Microprocessor (uP) + memory + timers + device controllers
Devices
Sensors receive signals from physical environment
Actuators act on physical environment
Displays provide indications to user

Specialized controllers — very large scale integrated circuits (VLSI)

Software

Fixed program code (FIRMWARE) not directly accessible to user
Initialization / reset routine
Main loop
Polls devices for events requiring attention
Responds to interrupts from devices that require immediate attention
Continues at start of loop

Handler functions for events

Embedded Systems — Hadassah College — Spring 2012 Overview Dr. Martin Land

Hardware Environment

Microcontroller (nC)
Microprocessor core (uP)
Memory
RAM for data + ROM for program (firmware)

Timers
Time internal / external events
Watchdog — timeout resets system if code loop fails

Controller 1/0
Interrupt controller — external event grabs processor attention
Analog <> digital converters (A/D and D/A)
Digital signal processor (DSP)
Serial <> parallel converters (UART)

Sensors

Position, contact, temperature, pressure, light, ...
Actuators

Displays, motors, solenoids, relays, valves, transmitters, ...

eeeeeeeeeeeeeee — Hadassah College — Spring 2012 Overview

/0 in DVD Player

Sensors

Switches on user interface
On/Off, REV, FF, Pause, Open/Close, Play, Stop, ...

Motion detectors
Disk inserted, disk ejected, beginning of disk, end of disk, ...

Safety detectors
Dew detector, thermostat, over-voltage, no-signal, ...

Actuators

Disk drive motor, insert/eject motor
Motor turns

Direction gear control solenoids
Solenoid pushes or pulls

Embedded Systems — Hadassah College — Spring 2012 Overview Dr. Martin Land

Control Theory

Interacting with ph

Open Loop Control

desired Controller Physical System
hysical state control signals measured state
Py > calculator 2 3| | physical state >
theory of :
ohysical system physical model

state(t,,,)=F(state(t,), control(t,))
control(t,,,)=G(target state(t,))

Closed Loop Control

Controller

desired

calculator Physical System
physical state

control signals

measured state
physical state >

> theory of
physical system

physical model

sampler

T feedback signals
state(t,,,) = F(state(t,), control(t,))

control(t,,,)=G(target state(t,), measured state(t,))

Embedded Systems — Hadassah College — Spring 2012

Overview Dr. Martin Land 18

Simple Example

Controller for wireless mouse
Mouse contains RF transceiver
Transmits to USB adapter on PC

Mouse one of several PC devices
Identifies itself to PC with device ID

Mouse powered by battery

Sleeps after 5 seconds idle
Maintains state
Wakes up on motion or button click

Wireless Mouse Hardware

Switches
Mouse buttons
Motion sensors (mechanical or optical)
Detect X-Y position
Microprocessor
Translates switch and sensor outputs to motion data
Manages battery usage and mouse status
Peripheral Engine (PE)
Controls RF link
Stores device information, button status, and X,Y-position
Radio Transceiver (Transmitter / Receiver)

i

el ‘ -
= * Rotary Encoder Signal (X)

PE "l FOr - Rotary Encoder Signal ()
- MOUSE « Left Click Signal
IRRx COMTROL

- — b+ Right Chck Signal
L ‘ RTx

Embedded Systems — Hadassah College — Spring 2012 Overview Dr. Martin Land 20

Mouse Routine (1)

: inittialization

init: request ID from PC
describe hardware to PC
store X-Y position
enable reset interrupt
enable wake-up Interrupt
zero 5 second timer

; main loop

L1: read button status
cmp button status, stored status
JE L2
CALL button

L2: read motion detectors

calculate X,Y-position

CMP position, stored position

JE L3
CALL motion
L3: SUB timer, loop runtime
CMP timer,O
JE sleep
JMP L1
; end main loop

; send stored request string
; send stored request string

In memory buffer

; watchdog timer
; signal from X-Y or button

; CX « 5 second count
; each loop: SUB CX, loop runtime

: CX == 0= 5 second timeout

Peripheral Engine (PE) encodes

: status of 3 buttons and
- sends button status to PC

; Peripheral Engine (PE) encodes
; X,Y-position and

; sends position to PC

; decrease timer

iIT 5 seconds passed, sleep

- continue

Embedded Systems — Hadassah College — Spring 2012

Dr. Martin Land 21

Mouse Routine (2)

button:

motion:

reset:

; button press handler

store button status iIn PE

instruct PE to send button status to PC

zero 5 second timer

RET

> motion handler

store position In PE

instruct PE to send X,Y -position to PC

zero 5 second timer

RET

; Sleep state

lock PE registers ;. store state

turn-off battery to PE and transceiver

JMP wait low power do-nothing loop
stays here until interrupt

; wake-up ISR

unlock PE registers ;, wake up
JMP L1 ; continue
; reset ISR

JMP 1Init ; start

Embedded Systems — Hadassah College — Spring 2012 Overview Dr. Martin Land

22

The Logic Gate Alternative

Timer [€ > Perioheral X,Y-Position Button
7 e Pt < > Counter Status
> ngine Logic Logi
gic
Reset and
Wake-up))
o _ Logic R Strin
X,Y-position logic T Sequence
Counts mouse motion clicks | UART
Adjusts stored value in PE memory
Button status logic
Encodes button presses to PE
Reset and wake-up logic Gate Implementations
Initializes and wakes up sleeping mouse Individual 1Cs
Puts idle mouse to sleep Large "footprint”

Costly manufacture
Custom IC
Costly development

String sequence logic
Transmits code strings to PC as bits

Embedded Systems — Hadassah College — Spring 2012 Overview Dr. Martin Land 23

Goals in Embedded Design

Reliability
Device operation depends on embedded processor
Bug is inconvenient, expensive, possibly life-threatening
Device must work 24/7/365 without user reset

Performance

Real time system
Respond in fixed time limits
Satisfy real world timing constraints

Scheduling
Optimized 1/0

Cost
Minimize manufacturing cost for consumer market
Fast Time to Market
No opportunity for future modification

Strict Requirements
Programmer's nightmare

NASA Photo ID: S84-27017 (February 11, 1984)

Embedded Systems — Hadassah College — Spring 2012 Overview Dr. Martin Land 25

Multitasking / Concurrency in Embedded Systems

Controller handles simultaneous independent events
Inputs from external sensors

Internal processes

Outputs to external actuators
Programmable Thermostat

Three concurrent tasks

/* Monitor Temperature */
do forever {
measure temp ;
if (temp < setting)
start furnace ;
else if (temp > setting + delta)
stop furnace ;

/* Monitor Time of Day */
do forever {
measure time ;
if (6:00 am)
setting = 72°F;
else if (11:00 pm)
setting = 60°F ;

/* Monitor Keypad */

do forever {
check keypad ;
if (raise temp)
setting++ ;
else if (lower temp)
setting-- ;

Ref: Daniel W. Lewis, Fundamentals of Embedded Software: Where C and Assembly Meet

Embedded Systems — Hadassah College — Spring 2012

Overview

26

Design Process

Method

Top-down design — process abstraction to physical components

Bottom-up design — construct system to control existing hardware
Requirements

Define control problem and hardware abstraction
Architectural specification

Determine high level modules and information flow
Detailed system design

Determine functions and information flow within each module
Implementation

Coding in C and assembly language
Debugging

Initial debugging in code emulator

Testing code on target system
Using 1/0 emulation
Using physical platform

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee — Spring 2012 Overview

Debugging

No bugs allowed
High performance demands
No human operator to perform "workaround"

No extended beta-testing ("'service packs")

Hardware/software debugging
Hardware configuration — time consuming

Programmer must understand
Hardware behavior (well enough for debugging)
Hardware/software interactions
All possible external situations
Interaction of C code and assembly code

Compiler choices

Debugging usually involves emulation of target system

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee — Spring 2012 Overview

Development Tools

Language tools
Program manager
Integrated code editor, file manager, device database
Assembler, C compiler, linker
Assembly / C language to microcontroller machine language
Debugger

Simulates machine code execution on PC
Simulates external 1/0

Hardware tools
Development platform
Generic circuit boards with microcontroller and external 1/0 devices
Device programmer
Burn code from PC file to microcontroller internal ROM
Hardware debugger

In-Circuit Emulator (ICE) — PC connection acts instead of controller
In-Circuit Debugger (ICD) — program real controller for debugging

Embedded Systems — Hadassah College — Spring 2012 Overview Dr. Martin Land

Development Platform

Power LED

Reset Button

Peripheral and Digital If0

ICSP Interface (PICkit compatable)

Arduino Compatability Jumper
Powerful 64MHz Microcontroller

Fower pins

USB Interface and Power Analogue and Digital I/0

Over Current Protection — :f‘f“ Power and 1/0 pins

Power Management Valtage Polarity Protection

5 Volts and 3.3 Volts Regulated Supplies
9 Volts DC (Centre Positive)

o

Embedded Systems — Hadassah College — Spring 2012 Overview Dr. Martin Land 30

In-Circuit Emulator (ICE)

Connection to PC

